
Maxim > Design Support > Technical Documents > Application Notes > Interface Circuits > APP 5306

Keywords: UART, RS232, RS485, SPI, I2C, half duplex, HDX, full duplex, FDX, WLP, wafer level package, FIFO, CTS,
RTS, clear to send, ready to send, baud

APPLICATION NOTE 5306

Programming Baud Rates of the MAX3108 UART
By: Micheal Scherrenburg
Mar 30, 2012

Abstract: The MAX3108 is a complete high-performance universal asynchronous receiver-transmitter (UART) in a tiny
2.1mm × 2.1mm wafer level package (WLP). It provides many high-end features in hardware, thus reducing firmware
complexity. Instead of fast response and intensive firmware management, most of the MAX3108's advanced features
need only initial firmware setup and little or no firmware management. This application note, one in a series explaining
the MAX3108 features in detail, explains how to set target baud rates.

Introduction
The MAX3108, a high-performance universal asynchronous receiver-transmitter (UART) in a wafer-level package
(WLP), is packed with many advanced features in hardware, from individual 128 word transmit and receive FIFOs to
extensive hardware-mediated flow control. Most of the MAX3108's functionality relies on the programming of a clock.
So, one of the first programming tasks is to set an appropriate baud rate clock.

This application note explains how to program the five registers (and 1 bit) to set a desired baud rate. A spreadsheet
is provided that greatly simplifies the task of UART baud rate programming. This document presumes that the reader
is already familiar with the application note 5304, "Interfacing to the MAX3108 UART."

Baud Rate Generation
This section describes how the MAX3108 creates a baud rate frequency from a crystal or oscillator input. This should
be done first when programming the UART. Except for the SPI/I²C interface and basic GPIO functionality, nothing else
in the MAX3108 functions until a clock rate is programmed. The device comes out of reset with clocks disabled if
using a crystal as a frequency source.

The MAX3108 processes a clock source into an output baud rate in the following way:

1. If the clock source is a crystal, the crystal oscillator block converts this source to an internal logic level clock. The
MAX3108 accepts crystals that resonate between 1MHz and 4MHz. To enable the crystal oscillator, set the
CrystalEN bit to 1. Alternatively, an external logic level clock source may be provided at the XIN pin of the
MAX3108. The MAX3108 accepts a clock frequency from 500kHz to 35MHz. Because the CrystalEn bit defaults
to 0 at power-up or after reset, it will use an external clock unless specifically programmed otherwise.

2. The clock from step 1 feeds the input of a predivider. It divides the input frequency by a number between 1 and
63. Bits 5 through 0 of the PLLConfig register define the divisor.

3. The output of the predivider feeds a phase-locked loop (PLL), which multiplies the frequency of the predivider by

Page 1 of 22

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/14/c/Interface%20Circuits#c14
http://www.maximintegrated.com/MAX3108
http://www.maximintegrated.com/design/tools/appnotes/5306/AN5306-MAX3108-freq-select.xlsx
http://www.maximintegrated.com/an5304

1, 6, 48, 96, or 144. To multiply by 1, set bit 2, the PLLEn bit of the CLKSource register, to 0. To set any other
multiplier, set the PLLEn bit to 1, and also set bits 7 and 6 of the PLLConfig register as illustrated in Table 4 of
the MAX3108 data sheet, which also details the frequency limits of the PLL. Note that the PLL cannot be used at
all if the supply Voltage (VCC) is less than 2.35V. The PLL is useful when generating high baud rates from low
frequency clock sources.

4. The output of the PLL feeds a baud rate generator, whose output frequency is divided. This circuit divides its
input frequency by an integer part (from 1 through 65,535) and a fractional part (from 0/16 through 15/16). This is
programmed through the DIVMSB register, the DIVLSB register, and bits 3 through 0 of the BRGConfig register.
The output of the baud rate generator is the internal baud rate clock. The actual baud rate would be the
frequency output of the baud rate generator divided by 16. One can divide by 8 or by 4 instead, but dividing by
16 should be used if at all possible. Dividing by 8 or by 4 makes some features unusable, and reduces the
frequency error tolerance of the MAX3108 UART receiver.

Figure 1. The MAX3108 clock selection diagram.

Figure 2. 2x and 4x baud rates.

Table 1. Differences between 1x, 2x, and 4x Rate Modes

Rate Mode
Divider BRGConfig[5] BRGConfig[4] IrDA

Capable?
Line Noise
Detect Capable?

Receive Frequency
Error Tolerance

16 0 0 Yes Yes Best

8 0 1 No Yes Very good

4 1 0 No No Good

The crystal oscillator operates with common UART crystals, such as 1.8432MHz, and the external clock input works
with a range of common clock frequencies found in embedded systems. This is a lot of information to digest just to

Page 2 of 22

http://www.maximintegrated.com/MAX3108

generate a baud rate clock. Also, for most baud rates, the same baud rate can be generated in many ways.

Baud Rate Assistance Spreadsheet
For this reason, the "MAX3108 Freq Select" spreadsheet is available for download. Based on a given input frequency
and desired baud rate, this tool makes it easy to determine what to program into the MAX3108's five clock
configuration registers. The spreadsheet calculates a few of the best ways to generate the target baud rate from the
given input frequency.

In many cases, the target baud rate can be generated exactly. Sometimes however, the best possible configuration
results in a small error in the generated baud rate. This is why the spreadsheet provides more than one possible
configuration. Each possibility yields the closest frequency match, but with different assumptions.

Most of the time, there will be one configuration that is obviously superior. After describing the spreadsheet, we will
work through some examples to show how easy it is to determine the best correct configuration to program into the
MAX3108.

Spreadsheet Description
The spreadsheet needs only four inputs from the user, all near the top of the Synthesize tab.

Enter the four parameters as follows:

1. In cell C2, enter the crystal frequency or the external oscillator frequency, in Hertz.
2. In cell C3, enter the desired baud rate, in bits per second.
3. In cell C5, enter y if the frequency source is a crystal (that uses the MAX3108 crystal oscillator), or enter n if the

frequency source is an external clock supplied to the MAX3108 XIN pin.
4. In cell C6, enter n. This pertains to a MAX3108 feature that will be described later.

The results appear starting in row 8.

Page 3 of 22

http://www.maximintegrated.com/design/tools/appnotes/5306/AN5306-MAX3108-freq-select.xlsx

If cell C8 reports FALSE, then you have chosen a crystal as the frequency source, and it is out of the range of valid
frequencies for the MAX3108 crystal oscillator circuit. Valid crystal oscillator frequencies range between 1MHz and
4MHz.

If cell C9 reports FALSE, then you have chosen an external clock source, and the frequency you have specified is
outside the range of valid clock frequencies for the XIN pin. Valid external oscillator frequencies range between
0.5MHz and 35MHz.

Cell C11 reports if it is at all possible to reasonably generate the desired baud rate. Cell C11 can report FALSE
because cells C8 or C9 report FALSE. Or because no configuration exists that can reasonably achieve the target baud
rate. For example, requesting a baud rate above the MAX3108's maximum of 24MBd causes cell C11 to report FALSE
regardless of the values of the other user entries.

Further results appear starting in row 13.

Columns D, E, and F calculate the configuration with the lowest frequency error, each under a different assumption.
Column D assumes that the rate mode is fixed at 16, column E assumes that the rate mode is fixed at 8, and column
F assumes that the rate mode is fixed at 4. As a general rule, the rate mode should be kept at 16, unless there is a
compelling reason to choose otherwise, a topic that we will return to soon.

Row 14 is a flag, which if FALSE, indicates that the corresponding rate mode cannot be used in any configuration that
produces a result near the desired baud rate. In this case, the other entries in this column will be blank.

Rows 15 through 17 and row 20 describe the configuration in a way that can be understood via Figures 1 and 2. Row
15 describes the predivider value chosen. Row 20 indicates which PLL multiplier was chosen. Additionally, rows 16
and 17 describe the integer and fractional part of the fractional rate generator. Of more direct interest, row 17, shows
the actual baud rate generated, and row 18, contains the frequency error, in percent.

Rows 21 through 25 represent the values to program into the five MAX3108 clock configuration registers, in hex. When
a configuration is selected by the user, these five hex values are copied into a program, to be described later, to load
these values into the MAX3108.

A First Example
Let's begin with a simple example, generating 19.2kBd from a 1.8432MHz crystal. Enter the following parameters:

Page 4 of 22

This is the result:

Note that cell D19 indicates zero frequency error, at least with regards to the MAX3108 conversion process from
frequency input to baud rate output. This is the best scenario, where rate mode is 16. Consult cells D21 through D25
to determine what to program into the MAX3108 clock configuration registers. You will find that, in the majority of the
cases, you will select cells D21 though D25 to program the desired baud rate.

An Example with a Frequency Error
Now let's try a different example. Let's generate 190kBd from a 1.8432MHz crystal. Enter the following parameters:

Please note the different result:

Page 5 of 22

Now, we have a small error for a rate mode of 16, and less error for the other rate modes. In this case, the error is
small enough that the cell D21 through D25 values should be used.

What is a small enough error? In general, a frequency error of 0.8% or less should be no cause for concern. However,
a frequency error of 2.0% or higher should be looked at carefully. Errors between 0.8% and 2.0% involve some
judgment. In this case, the frequency error with a rate mode of 16 is about 0.07%, more than small enough to make it
the best choice for configuration.

An Example with a Large Frequency Error
We will now try something that shows why we may need to sometimes choose columns E or F. To begin, let's
generate 5.678901MBd from a 28.23MHz clock. Enter the following parameters:

Here, we obtain a more interesting result:

Page 6 of 22

Note the frequency error with a rate mode of 16 is 2.63%, which is too high. If the MAX3108 IRDA feature is used,
the rate mode must be set to 16. In this case, perhaps a different input frequency can be chosen, 18MHz for example.
Or perhaps a more careful analysis of channel timing can be undertaken, to verify if this error does not impact the
specific system being designed.

Another alternative is to choose the configuration with the rate mode set at 8. This results in a very respectable 0.5%
frequency error. In this situation, the parameters to program the MAX3108 clock configuration registers would be taken
from cells E21 through E25.

An Example with More Limited Choices
For output rates greater than 6MBd, the rate mode cannot be 16. This is another reason why one of the other rate
modes must be selected. Even below 6MBd, some combinations of input frequencies and output baud rates conspire
to disallow the case where rate mode is 16. As an example, try to generate 5.775MBd from a 1.8432MHz crystal.

The result is:

Page 7 of 22

In this case, a rate mode of 16 cannot be used at all. Either the input frequency must be changed, or a rate mode of 8
must be chosen. Note, in some cases, a rate mode of 8 is also not an option. For example, when the output baud rate
is greater than 12MBd, the only possible rate mode is 4.

Programming the MAX3108
Once a set of programming parameters has been chosen from the spreadsheet, programming the MAX3108 is a
straightforward task. When loading all the registers at power-up, these five registers comprise part of the set being
loaded. This section describes how to program the MAX3108 for a target baud rate, presuming there is not yet any
serial data flow. Further steps must be taken when changing an existing baud rate. These steps will be explained in a
future application note. Let's begin with an example where the frequency source is an external clock, say, generating
190kBd from a 28.23MHz external clock source on the MAX3108 XIN pin. The input section of the spreadsheet would
look like:

The results are:

Page 8 of 22

Here is the program to load the MAX3108 clock configuration registers to generate the target baud rate. Note that the
parameters filled into array U190K in the program are copied from cells D21 through D25 in the spreadsheet.

/*
** Run UART at 190KBAUD from a 28.23MHz clock source
*/
unsigned char U190K [] = {
 0xF7, 0x05, 0x18, 0x00, 0x04
} ;

 // Load the MAX3108 clock configuration registers appropriately
 //
 if (!MAX3108_Puts (MAX3108R_PLLCONFIG, sizeof U190K, U190K)) {
 // handle possible I²C protocol error here
 }

A Second Programming Example
For another example, let's generate 230.4kBd from a 1.8432MHz crystal as input. This is a very common crystal for
UART clock generation. The input section of the spreadsheet would look like:

Page 9 of 22

The results are:

When the clock source is a crystal, you have the option of verifying crystal operation. The ClkReady bit in the STSInt
register asserts only when the crystal oscillator and the PLL are operating and locked. For a given MAX3108 clock
configuration that is known to be working, this reduces to verification that the crystal oscillator is running as expected.
The ClkReady bit does not work if using an external clock source, so do not test it if an external clock feeds the
MAX3108.

Though useful in a development environment, this feature is probably of little use in production or in equipment
deployed in the field. Note that other bits in the STSInt register are cleared upon read. There is no way to check the
ClkReady bit without also clearing a possible TxEmptyInt or GPIxInt condition. Programmers beware!

In the case of an external clock, if the predivider or PLL factor is changed, the UART will not be ready to transmit or
receive immediately. After changing the predivider or PLL factor, or after enabling the PLL, the UART will function at
the new programmed baud rate after a time delay of 1200 × (predivider)/(XIN frequency) or less.

/*
** Run UART at 230.4KBAUD from a 1.8432MHz crystal
*/
unsigned char U230K4 [] = {
 0x03, 0x00, 0x01, 0x00, 0x06
} ;

 // Load the MAX3108 clock configuration registers appropriately
 //
 if (!MAX3108_Puts (MAX3108R_PLLCONFIG, sizeof U230K4, U230K4)) {
 // handle possible I²C protocol error here
 }

 // Check XTAL and PLL are running OK - optional
 while (MAX3108_Read (MAX3108R_STSINT & 0x0008) == 0) ;

Page 10 of 22

Avoiding PLL Changes
So far, we have been using the results from rows 13 through 25. Another section (in rows 27 through 39) has slightly
different assumptions. In this second section, configurations with the lowest frequency error are calculated, but with the
PLL fixed at different rates.

This comes in handy when generating multiple baud rates from a single frequency source, without incurring the delay
associated with PLL relock. This means that the predivider and PLL must not change between the various
configurations.

One example of this would be in an IO-Link® scenario, where it is important to be able to change quickly between
230.4kBd 38.4kBd, and 4.8kBd. Let's see how this can be accomplished, assuming our ubiquitous 1.8432MHz crystal.
Starting with the highest baud rate, the input section of the spreadsheet would look like:

This results in:

Let's start with the assumption that rate mode can be 16. Note the predivider and the PLL factor, 3 and x6,
respectively. If this works, we would use the configuration values in cells D21 through D25 to program the MAX3108
for 230.4kBd. Now, let's try the next baud rate.

Page 11 of 22

The result in this case is:

None of these entries has a PLL factor of x6, so let's now consult the second section.

Column E provides configuration under the assumption that the PLL factor must be x6. Note that the predivider value
is also 3. This means that the PLL will not need to relock going from 230.4kBd to 38.4kBd, if we choose to configure

Page 12 of 22

the 38.4kBd output rate with the parameters given in cells E35 through E39.

We need to check that we can do this with 4.8kBd as well. The input section of the spreadsheet would look like:

The result is:

Just like in the case of 38.4kBd, none of the results have a PLL factor of x6, so we consult the second section:

Page 13 of 22

And just like in the case of 38.4kBd, the x6 section shows we can generate 4.8kBd with a PLL factor of x6 and a
predivider of 3, using the configuration parameters found in cells E35 through E39.

Avoiding the PLL Altogether
It is best to avoid the PLL altogether in some scenarios. For example, the PLL does not function if the VCC supplied to
the MAX3108 is below 2.35V. Also, if it is important to operate quickly after coming out of a low power mode, the PLL
should be avoided. Suppose we need to generate 230.4kBd, 38.4kBd, and 4.8kBd from a 1.8432MHz crystal, but we
also need to avoid using the PLL.

The easiest way to accomplish this would be to consult the section with the PLL factor fixed at x1 for all three
instances of the spreadsheet. For a target baud rate of 230.4kBd, the second section is:

Cells D35 through D39 report the required configuration for all three instances of the spreadsheet, one instance for
each of the three desired baud rates. Since the PLL is not used in any of these three configurations, and since the
predivider value does not change, switching between all three baud rates avoids delays from PLL relock.

Page 14 of 22

Keeping the Rate Mode High
If it is desired to keep the rate mode set at 16 and also avoid the PLL, the third results section, rows 41 through 53,
should be consulted. Note that this is a fairly restrictive scenario, so this third section will often be blank to indicate that
no such configuration can be reasonably achieved. As an example, let's generate a 190kBd output rate from a
28.32MHz external clock source.

The input section of the spreadsheet is:

The result in this case is:

For a rate mode of 16, the suggested configuration uses a PLL factor of x144, but we need a PLL factor of x1. This
does not meet our requirement of a rate mode of 16 and a PLL factor of x1. Consulting the second results section:

Page 15 of 22

For a PLL factor of x1, the suggested rate mode is 8. Not quite what we are looking for. Consulting the third results
section of the spreadsheet:

We see that generating 190kBd from a 28.23MHz external clock is possible, with a PLL factor of x1 and a rate mode
of 16. The frequency error is a reasonable 0.28%. The configuration parameters to accomplish this are in cells D49
through D53.

The Manual Tab
For experimentation, or when dealing with unusual situations, the Manual tab of the spreadsheet provides some basic
assistance. The spreadsheet has four sections. The user input section is:

Page 16 of 22

After entering all these parameters, consult the second section:

Make sure that no cell in column D reports FALSE, and that no cell in column D reports BAD. Correct any errors in
the user input section before proceeding any further. Once all errors are cleared, consult the third section:

If you see WARNING in cell D33, you need to go back and fix an error in your input. Otherwise the actual baud rate
generated appears in cell C33, the percent error as compared to the desired baud rate (cell C5) appears in cell C34,
and the configuration parameters to program the MAX3108 clock configuration registers appear in cells C35 through

Page 17 of 22

C39. Note: unless you have had some assistance, the frequency error could be quite large, which is the reason for the
fourth section:

Here, the only input is the desired baud rate in cell C42. It assumes a predivider, PLL factor, and rate mode as
entered in the user input section, and calculates the best baud rate generator parameters to use. To make use of
these, copy them back to the user input section, manually copying cell C43 to cell C10, and cell C44 to cell C11.
Otherwise, the results of this fourth section are not reflected in the third section, the outputs section.

A Great Debug Trick
The MAX3108 provides a way to verify what the output baud rate is. This feature is useful during development,
debugging, and possibly during manufacture. When this feature is activated, the MAX3108 feeds the output of the
baud rate generator, just before the rate mode divider, to the RTS pin.

For example, let's configure the MAX3108 for a baud rate of 230.4kBd, using a rate mode of 16. Activating this
feature, the RTS pin will supply a clock with a frequency of 230.4K × 16, or 3.6864MHz. This can be verified attaching
a frequency counter to the RTS pin, or approximately, with an oscilloscope. This feature is enabled when the
CLKtoRTS bit, bit 7, in the CLKSource register is set to 1. This is what that parameter does in the Synthesize tab of
the spreadsheet:

Setting this input to y causes all reported configurations to enable this feature. Once loaded into the MAX3108, these
configurations will supply a clock to the RTS pin. This is one way to take advantage of this feature.

Another method is to turn the feature on or off without changing the clock configuration already programmed into the
MAX3108. The following code snippet shows how this might be done. These functions would turn on or off the feature
without otherwise disturbing the clock configuration.

/*
** Function to enable the clock-to-RTS feature of the MAX3108
**
** Returns TRUE if operation successfully completed.
*/
BOOL CLKtoRTS_En (void) {
 unsigned int temp;

Page 18 of 22

 temp = MAX3108_Read (MAX3108R_CLKSOURCE); // returns 0xff00 if I²C error
 if (temp & 0xff00) return FALSE;
 return MAX3108_Write (MAX3108R_CLKSOURCE, temp | 0x0080);
}

/*
** Function to disable the clock-to-RTS feature of the MAX3108
**
** Returns TRUE if operation completed successfully
*/
BOOL CLKtoRTS_Dis (void) {
 unsigned int temp;

 temp = MAX3108_Read (MAX3108R_CLKSOURCE); // returns 0xff00 if I²C error
 if (temp & 0xff00) return FALSE;
 return MAX3108_Write (MAX3108R_CLKSOURCE, temp & 0x007f);
}

Conclusion
This application note has shown how to use a spreadsheet to quickly and easily calculate the parameters needed to
program the MAX3108 for any desired baud rate. It also explains how to program the MAX3108 using these
parameters.

Appendix
This appendix contains the definitions necessary to understand the pseudocode.

Definitions Relating to Pin I/O
POLL_MAX3108_IRQ: This pseudocode returns the digital state of the MAX3108 IRQ pin. This pin requires an
external pullup to work properly.

SET_MAX3108_CS_PIN_HIGH: This pseudocode drives the MAX3108 CS/A0 pin high.

SET_MAX3108_CS_PIN_LOW: This pseudocode drives the MAX3108 CS/A0 pin low.

SET_MAX3108_RESET_PIN_HIGH: This pseudocode drives the MAX3108 RST pin high.

SET_MAX3108_RESET_PIN_LOW: This pseudocode drives the MAX3108 RST pin low.

WAIT: This pseudocode delays execution of the following instruction by at least the specified time.

Definitions Relating to the I²C Interface
I2C_SEND_BYTE: This pseudocode sends one byte to the MAX3108 via the I²C bus.

I2C_SET_RESTART_CONDITION: This pseudocode puts a restart condition on the I²C bus.

Page 19 of 22

I2C_SET_START_CONDITION: This pseudocode puts a start condition on the I²C bus.

I2C_SET_STOP_CONDITION: This pseudocode puts a stop condition on the I²C bus.

I2C_TEST_ACK: This pseudocode returns TRUE if the MAX3108 responded to a byte written with an ACK, and
returns FALS if the MAX3108 responded to a byte written with a NACK.

SPI_SEND_BYTE: One byte is sent to the MAX3108 via the SPI interface, and the byte returned by the MAX3108 at
the same time is captured.

Definitions Related to the Register Interface
MAX3108_Gets: This routine is either MAX3108_I2C_Gets or MAX3108_SPI_Gets, depending on which interface is
implemented in the application.

MAX3108_Puts: This routine is either MAX3108_I2C_Puts or MAX3108_SPI_Puts, depending on which interface is
implemented in the application.

MAX3108_Read: This routine is either MAX3108_I2C_Read or MAX3108_SPI_Read, depending on which interface is
implemented in the application.

MAX3108_Write: This routine is either MAX3108_I2C_Write or MAX3108_SPI_Write, depending on which interface is
implemented in the application.

MAX3108_I2C_Gets: This routine burst reads from the MAX3108 receive FIFO or other MAX3108 registers via the I²C
interface.

MAX3108_I2C_Puts: This routine burst writes to the MAX3108 transmit FIFO or other MAX3108 registers via the I²C
interface.

MAX3108_I2C_Read: This routine reads the value of one of the MAX3108 registers via the I²C interface.

MAX3108_I2C_Write: This routine writes a value to one of the MAX3108 registers via the I²C interface.

MAX3108_SPI_Gets: This routine burst reads from the MAX3108 receive FIFO or other MAX3108 registers via the SPI
interface.

MAX3108_SPI_Puts: This routine burst writes to the MAX3108 transmit FIFO or other MAX3108 registers via the SPI
interface.

MAX3108_SPI_Read: This routine reads the value of one of the MAX3108 registers via the SPI interface.

MAX3108_SPI_Write: This routine writes a value to one of the MAX3108 registers via the SPI interface.

MAX3108 Register Defines

//
// MAX3108 Register map defines
//
#define MAX3108R_RHR (0x00)

Page 20 of 22

#define MAX3108R_THR (0x00)
#define MAX3108R_IRQEN (0x01)
#define MAX3108R_ISR (0x02)
#define MAX3108R_LSRINTEN (0x03)
#define MAX3108R_LSR (0x04)
#define MAX3108R_SPCLCHRINTEN (0x05)
#define MAX3108R_SPCLCHARINT (0x06)
#define MAX3108R_STSINTEN (0x07)
#define MAX3108R_STSINT (0x08)
#define MAX3108R_MODE1 (0x09)
#define MAX3108R_MODE2 (0x0a)
#define MAX3108R_LCR (0x0b)
#define MAX3108R_RXTIMEOUT (0x0c)
#define MAX3108R_HDPLXDELAY (0x0d)
#define MAX3108R_IRDA (0x0e)
#define MAX3108R_FLOWLVL (0x0f)
#define MAX3108R_FIFOTRGLVL (0x10)
#define MAX3108R_TXFIFOLVL (0x11)
#define MAX3108R_RXFIFOLVL (0x12)
#define MAX3108R_FLOWCTRL (0x13)
#define MAX3108R_XON1 (0x14)
#define MAX3108R_XON2 (0x15)
#define MAX3108R_XOFF1 (0x16)
#define MAX3108R_XOFF2 (0x17)
#define MAX3108R_GPIOCONFG (0x18)
#define MAX3108R_GPIODATA (0x19)
#define MAX3108R_PLLCONFIG (0x1a)
#define MAX3108R_BRGCONFIG (0x1b)
#define MAX3108R_DIVLSB (0x1c)
#define MAX3108R_DIVMSB (0x1d)
#define MAX3108R_CLKSOURCE (0x1e)

Excel is a registered trademark of Microsoft Corporation.
IO-Link is a registered trademark of ifm electronic GmbH.

Related Parts

MAX3108 SPI/I²C UART with 128-Word FIFOs in WLP

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 5306: http://www.maximintegrated.com/an5306

Page 21 of 22

http://www.maximintegrated.com/datasheet/index.mvp/id/7173
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an5306

APPLICATION NOTE 5306, AN5306, AN 5306, APP5306, Appnote5306, Appnote 5306
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 22 of 22

http://www.maximintegrated.com/legal

	maxim-ic.com
	Programming Baud Rates of the MAX3108 UART - Application Note - Maxim

