

AOZ8832DI-05

Ultra Low Capacitance Two-line
Bidirectional TVS Diode

General Description

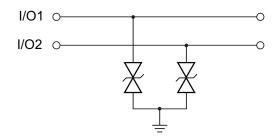
The AOZ8832DI-05 is an ultra low capacitance one-line bidirectional transient voltage suppressor diode designed to protect high speed data lines and voltage sensitive electronics from high transient conditions and ESD.

This device incorporates one bidirectional TVS diode in an ultra-small 0402 footprint package. It may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (±15 kV air, ±15 kV contact discharge).

The AOZ8832DI-05 comes in an RoHS compliant package and is rated over a -40°C to +85°C ambient temperature range.

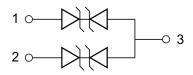
The ultra-small 1.0mm x 0.6 mm x 0.5 mm DFN package makes the AOZ8832DI-05 ideal for applications where PCB space is a premium. The small size and high ESD protection makes it ideal for protecting voltage sensitive electronics from high transient conditions and ESD.

Features


- ESD protection for high-speed data lines:
 - Exceeds: IEC 61000-4-2 (ESD) ±15 kV (air), ±15 kV (contact)
 - Human Body Model (HBM) ±15 kV
- Ultra low capacitance: 0.4 pF
- Low clamping voltage
- Low operating voltage: 5.0 V
- Pb-free device

Applications

- Portable handheld devices
- Keypads, data lines, buttons
- Notebook computers
- Digital cameras
- Portable GPS
- MP3 players



Typical Application

Bidirection Protection of Two Lines

Pin Configuration

Ordering Information

Part Number Ambient Temperature Range		Package	Environmental
AOZ8832DI-05	-40°C to +85°C	DFN 1.0 x 0.6-3L	Green Product RoHS Compliant

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant. Please visit www.aosmd.com/media/AOSGreenPolicy.pdf for additional information.

Absolute Maximum Ratings

Exceeding the Absolute Maximum Ratings may damage the device.

Parameter	Rating		
VP – VN	5 V		
Peak Pulse Current (I_{PP}), $t_P = 8/20\mu s$ (IEC61000-4-5)	2 A		
Peak Pulse Power, t _P = 8/20μs	30 W		
Storage Temperature (T _S)	-65°C to +150°C		
ESD Rating per IEC61000-4-2, Contact ⁽¹⁾	±15 kV		
ESD Rating per IEC61000-4-2, Air ⁽¹⁾	±15 kV		
ESD Rating per Human Body Model ⁽²⁾	±15 kV		

Notes

- 1. IEC 61000-4-2 discharge with C $_{\rm Discharge}$ = 150 pF, R $_{\rm Discharge}$ = 330 $\Omega.$
- 2. Human Body Discharge per MIL-STD-883, Method 3015 $C_{Discharge}$ = 100 pF, $R_{Discharge}$ = 1.5 k Ω .

Maximum Operating Conditions

The device is not guaranteed to operate beyond the Maximum Operating Conditions.

Parameter	Rating	
Junction Temperature (T _J)	-40°C to +125°C	

Rev. 5.0 June 2021 **www.aosmd.com** Page 2 of 5

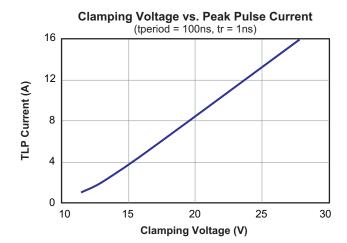
Electrical Characteristics

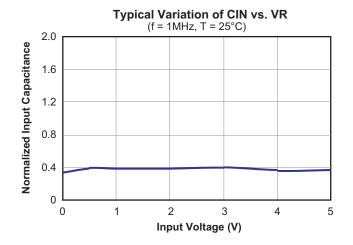
 T_A = 25°C unless otherwise specified. Specifications in **BOLD** indicate a temperature range of -40°C to +85°C.

Symbol	Parameter	Diagram
I _{PP}	Maximum Reverse Peak Pulse Current	!
V _{CL}	Clamping Voltage @ I _{PP}	IPP/
V_{RWM}	Working Peak Reverse Voltage	
I _R	Maximum Reverse Leakage Current	V _{CL} V _{BR} V _{RWM}
V _{BR}	Breakdown Voltage	IT VRWM VBR VCL
P _{PK}	Peak Power Dissipation	
CJ	Capacitance @ V _R = 0 and f = 1 MHz	Ipp

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{RWM}	Reverse Working Voltage ⁽³⁾	Between pins 1 and 2			5.0	V
V _{BR}	Reverse Breakdown Voltage ⁽⁴⁾	I _T = 1 mA, between pins 1 and 2	6.0	9.4	10.0	V
I _R	Reverse Leakage Current	V _{RWM} = 5 V, between pins 1 and 2		0.05	0.1	μA
V_{CL}	Channel Clamp Voltage	I_{PP} = 1 A, t_P = 100 ns, between pins 1 and 2		11.5	14.0	V
		I_{PP} = 2 A, t_P = 100 ns, between pins 1 and 2		13.0	16.0	V
		I_{PP} = 5 A, t_P = 100 ns, between pins 1 and 2		16.3	19.5	V
		I _{PP} = 1 A, IEC61000-4-5, 8/20 μs, between pins 1 and 2		12.8	15.5	V
		I _{PP} = 2 A, IEC61000-4-5, 8/20 μs, between pins 1 and 2		15.3	20.0	V
СЈ	Junction Capacitance	V _R = 0 V, f = 1 MHz, between pins 1 and 2		0.4	0.6	pF

Notes:


Rev. 5.0 June 2021 **www.aosmd.com** Page 3 of 5


 $^{3. \} The \ working \ peak \ reverse \ voltage \ (V_{RWM}) \ should \ be \ equal \ to \ or \ greater \ than \ the \ DC \ or \ continuous \ peak \ operating \ voltage \ level.$

^{4.} V_{BR} is measured at the pulse test current I_{T} .

Typical Performance Characteristics

Rev. 5.0 June 2021 **www.aosmd.com** Page 4 of 5

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. AOS does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.
As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.